If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-9t+4=0
a = 1; b = -9; c = +4;
Δ = b2-4ac
Δ = -92-4·1·4
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{65}}{2*1}=\frac{9-\sqrt{65}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{65}}{2*1}=\frac{9+\sqrt{65}}{2} $
| x2-12x+59=0 | | 10*x*3x*5=50 | | 3x+6+3x+18=90 | | 8x+6x=x+9 | | 8x-5+8=12 | | 11+12b=13b | | d(d+4)=2d+4 | | 3x-4=4x+24 | | |8x-5|+8=12 | | (x+9)^2=-49 | | 6x-1+9=44 | | 4x+4/5=21/5x=7/20 | | x-0.4x=45 | | (x-9)^2=-49 | | -2(e+1)=2e-2 | | 0.5r+3.25=3 | | -2+x/2=2 | | 3(x+)^2-12=63 | | x2+4x+4=25 | | 3x+5−13x=25 | | -39+4x=13 | | 15x−11x=8 | | 3x-6(2x+11)=6 | | x+23/x+11=x+11/x | | 3(x+4)^2-12=63 | | -8+x/6=4 | | -5n-10=2-(n+4) | | 25^(x)+5^(1+2x)=40 | | (b+5)(b+7)=0 | | -12y+8y-1-21=-5 | | 9x+4=-7+7x+15 | | x-88=60 |